社会对社交媒体的依赖不断增长,用户为新闻和信息产生的内容增强了不可靠的资源和虚假内容的影响,这使公众讨论并减少了对媒体的信任。验证此类信息的可信度是一项艰巨的任务,容易受到确认偏见的影响,从而开发了算法技术以区分假新闻和真实新闻。但是,大多数现有的方法都具有挑战性的解释,使得难以建立对预测的信任,并在许多现实世界中(例如,视听功能或出处的可用性)做出不现实的假设。在这项工作中,我们专注于使用可解释的功能和方法对文本内容的虚假新闻检测。特别是,我们开发了一个深层的概率模型,该模型使用各种自动编码器和双向长期记忆(LSTM)网络(LSTM)网络与语义主题相关的特征从贝叶斯混合模型推断出来。使用3个现实世界数据集的广泛的实验研究表明,我们的模型可与最先进的竞争模型达到可比的性能,同时促进从学习的主题中解释模型。最后,我们进行了模型消融研究,以证明整合神经嵌入和主题特征的有效性和准确性是通过在较低维嵌入中可分离性评估性能和定性性来定量的。
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
Recent advances in language modeling have enabled new conversational systems. In particular, it is often desirable for people to make choices among specified options when using such systems. We address the problem of reference resolution, when people use natural expressions to choose between real world entities. For example, given the choice `Should we make a Simnel cake or a Pandan cake?' a natural response from a non-expert may be indirect: `let's make the green one'. Reference resolution has been little studied with natural expressions, thus robustly understanding such language has large potential for improving naturalness in dialog, recommendation, and search systems. We create AltEntities (Alternative Entities), a new public dataset of entity pairs and utterances, and develop models for the disambiguation problem. Consisting of 42K indirect referring expressions across three domains, it enables for the first time the study of how large language models can be adapted to this task. We find they achieve 82%-87% accuracy in realistic settings, which while reasonable also invites further advances.
translated by 谷歌翻译
The problem of reversing the compilation process, decompilation, is an important tool in reverse engineering of computer software. Recently, researchers have proposed using techniques from neural machine translation to automate the process in decompilation. Although such techniques hold the promise of targeting a wider range of source and assembly languages, to date they have primarily targeted C code. In this paper we argue that existing neural decompilers have achieved higher accuracy at the cost of requiring language-specific domain knowledge such as tokenizers and parsers to build an abstract syntax tree (AST) for the source language, which increases the overhead of supporting new languages. We explore a different tradeoff that, to the extent possible, treats the assembly and source languages as plain text, and show that this allows us to build a decompiler that is easily retargetable to new languages. We evaluate our prototype decompiler, Beyond The C (BTC), on Go, Fortran, OCaml, and C, and examine the impact of parameters such as tokenization and training data selection on the quality of decompilation, finding that it achieves comparable decompilation results to prior work in neural decompilation with significantly less domain knowledge. We will release our training data, trained decompilation models, and code to help encourage future research into language-agnostic decompilation.
translated by 谷歌翻译
Numerous models have tried to effectively embed knowledge graphs in low dimensions. Among the state-of-the-art methods, Graph Neural Network (GNN) models provide structure-aware representations of knowledge graphs. However, they often utilize the information of relations and their interactions with entities inefficiently. Moreover, most state-of-the-art knowledge graph embedding models suffer from scalability issues because of assigning high-dimensional embeddings to entities and relations. To address the above limitations, we propose a scalable general knowledge graph encoder that adaptively involves a powerful tensor decomposition method in the aggregation function of RGCN, a well-known relational GNN model. Specifically, the parameters of a low-rank core projection tensor, used to transform neighborhood entities in the encoder, are shared across relations to benefit from multi-task learning and incorporate relations information effectively. Besides, we propose a low-rank estimation of the core tensor using CP decomposition to compress the model, which is also applicable, as a regularization method, to other similar linear models. We evaluated our model on knowledge graph completion as a common downstream task. We train our model for using a new loss function based on contrastive learning, which relieves the training limitation of the 1-N method on huge graphs. We improved RGCN performance on FB15-237 by 0.42% with considerably lower dimensionality of embeddings.
translated by 谷歌翻译
Gaussian Mixture Models (GMM) are one of the most potent parametric density estimators based on the kernel model that finds application in many scientific domains. In recent years, with the dramatic enlargement of data sources, typical machine learning algorithms, e.g. Expectation Maximization (EM), encounters difficulty with high-dimensional and streaming data. Moreover, complicated densities often demand a large number of Gaussian components. This paper proposes a fast online parameter estimation algorithm for GMM by using first-order stochastic optimization. This approach provides a framework to cope with the challenges of GMM when faced with high-dimensional streaming data and complex densities by leveraging the flexibly-tied factorization of the covariance matrix. A new stochastic Manifold optimization algorithm that preserves the orthogonality is introduced and used along with the well-known Euclidean space numerical optimization. Numerous empirical results on both synthetic and real datasets justify the effectiveness of our proposed stochastic method over EM-based methods in the sense of better-converged maximum for likelihood function, fewer number of needed epochs for convergence, and less time consumption per epoch.
translated by 谷歌翻译
Large-scale generative models show an impressive ability to perform a wide range of Natural Language Processing (NLP) tasks using in-context learning, where a few examples are used to describe a task to the model. For Machine Translation (MT), these examples are typically randomly sampled from the development dataset with a similar distribution as the evaluation set. However, it is unclear how the choice of these in-context examples and their ordering impacts the output translation quality. In this work, we aim to understand the properties of good in-context examples for MT in both in-domain and out-of-domain settings. We show that the translation quality and the domain of the in-context examples matter and that 1-shot noisy unrelated example can have a catastrophic impact on output quality. While concatenating multiple random examples reduces the effect of noise, a single good prompt optimized to maximize translation quality on the development dataset can elicit learned information from the pre-trained language model. Adding similar examples based on an n-gram overlap with the test source significantly and consistently improves the translation quality of the outputs, outperforming a strong kNN-MT baseline in 2 out of 4 out-of-domain datasets.
translated by 谷歌翻译
A large number of empirical studies on applying self-attention models in the domain of recommender systems are based on offline evaluation and metrics computed on standardized datasets, without insights on how these models perform in real life scenarios. Moreover, many of them do not consider information such as item and customer metadata, although deep-learning recommenders live up to their full potential only when numerous features of heterogeneous types are included. Also, typically recommendation models are designed to serve well only a single use case, which increases modeling complexity and maintenance costs, and may lead to inconsistent customer experience. In this work, we present a reusable Attention-based Fashion Recommendation Algorithm (AFRA), that utilizes various interaction types with different fashion entities such as items (e.g., shirt), outfits and influencers, and their heterogeneous features. Moreover, we leverage temporal and contextual information to address both short and long-term customer preferences. We show its effectiveness on outfit recommendation use cases, in particular: 1) personalized ranked feed; 2) outfit recommendations by style; 3) similar item recommendation and 4) in-session recommendations inspired by most recent customer actions. We present both offline and online experimental results demonstrating substantial improvements in customer retention and engagement.
translated by 谷歌翻译
Over the past years, fashion-related challenges have gained a lot of attention in the research community. Outfit generation and recommendation, i.e., the composition of a set of items of different types (e.g., tops, bottom, shoes, accessories) that go well together, are among the most challenging ones. That is because items have to be both compatible amongst each other and also personalized to match the taste of the customer. Recently there has been a plethora of work targeted at tackling these problems by adopting various techniques and algorithms from the machine learning literature. However, to date, there is no extensive comparison of the performance of the different algorithms for outfit generation and recommendation. In this paper, we close this gap by providing a broad evaluation and comparison of various algorithms, including both personalized and non-personalized approaches, using online, real-world user data from one of Europe's largest fashion stores. We present the adaptations we made to some of those models to make them suitable for personalized outfit generation. Moreover, we provide insights for models that have not yet been evaluated on this task, specifically, GPT, BERT and Seq-to-Seq LSTM.
translated by 谷歌翻译
Knowledge about space and time is necessary to solve problems in the physical world: An AI agent situated in the physical world and interacting with objects often needs to reason about positions of and relations between objects; and as soon as the agent plans its actions to solve a task, it needs to consider the temporal aspect (e.g., what actions to perform over time). Spatio-temporal knowledge, however, is required beyond interacting with the physical world, and is also often transferred to the abstract world of concepts through analogies and metaphors (e.g., "a threat that is hanging over our heads"). As spatial and temporal reasoning is ubiquitous, different attempts have been made to integrate this into AI systems. In the area of knowledge representation, spatial and temporal reasoning has been largely limited to modeling objects and relations and developing reasoning methods to verify statements about objects and relations. On the other hand, neural network researchers have tried to teach models to learn spatial relations from data with limited reasoning capabilities. Bridging the gap between these two approaches in a mutually beneficial way could allow us to tackle many complex real-world problems, such as natural language processing, visual question answering, and semantic image segmentation. In this chapter, we view this integration problem from the perspective of Neuro-Symbolic AI. Specifically, we propose a synergy between logical reasoning and machine learning that will be grounded on spatial and temporal knowledge. Describing some successful applications, remaining challenges, and evaluation datasets pertaining to this direction is the main topic of this contribution.
translated by 谷歌翻译